Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction.
نویسندگان
چکیده
We report a density functional theory (DFT) study of microscopic detailed effects of the bonding configuration of nitrogen-doped graphene (N-graphene) within the carbon lattice (including pyridinic, pyrrolic, and graphitic N) on the reactivity and mechanistic processes of H2O2 reduction reaction. We simulated the adsorption process of H2O2, analyzed the mechanistic processes, and calculated the reversible potential of each reaction step of the H2O2 reduction reaction on N-graphene. The results indicate that the adsorption of H2O2 on the pristine and N-doped graphene surfaces occurs via physisorption without the formation of a chemical bond. When H(+) is introduced into the system, a series of reactions can occur, including the breakage of the O-O bond, the formation of an O-C chemical bond between oxygen and graphene, and the creation of water molecules. The results also indicate a decrease in the energy of the system and a positive reversible potential for each reaction step. The calculations of the relative energy of each reaction step and the value of the onset potential for H2O2 reduction reaction suggest that the reactivity of pristine and N-doped graphene has the following order: pyridinic N-graphene > pyrrolic N-graphene > graphitic N-graphene > pristine graphene. We also proposed an explanation based on electrostatic potential calculations for this dependence of the reactivity order on the bond configuration of the doping in N-graphene. The results of this study should help in the atomic-scale understanding of the dependence of the reactivity of N-graphene on its microstructure, inspire the study of various types of heteroatom-doped graphenes to improve their catalytic efficiency, and provide a theoretical framework to analyze their reactivities.
منابع مشابه
Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملEnhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells.
An electrochemical approach for measuring the dynamic process of H(2)O(2) (a major ROS) release from living cells is reported. This approach, which is based on enhanced reduction of H(2)O(2) by nitrogen-doped graphene, could be potentially useful in the study of downstream biological effects of various stimuli in physiology and pathology.
متن کاملCo3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction
This study describes a facile and effective route to synthesize hybrid material consisting of Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide (Co3O4/N-rGO) as a high-performance tri-functional catalyst for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and H2O2 sensing. Electrocatalytic activity of Co3O4/N-rGO to hydrogen peroxide reduction was tested by ...
متن کاملFacile Synthesis of N, S-Doped Graphene from Sulfur Trioxide Pyridine Precursor for the Oxygen Reduction Reaction
In the work presented here, nitrogen and sulfur co doped on porous graphene was synthesized using pyrolysis at 900°C for 2h and the hydrothermal technique at 180°C for 24h as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. All the materials have been characterized by Scanning Electron Microscopy (SEM) and X-ray photo-electron spectroscopy (XPS). Moreov...
متن کاملHydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect
To explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. The electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. The graphene with the most stable configuration defect named as SW defect is considered. The hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 18 شماره
صفحات -
تاریخ انتشار 2013